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A non-stationary approach to the reflection of weak plane shocks is suggested as an 
alternative to the usual pseudo-stationary transformation. For regular reflection the 
non-stationary model produces results which are identical to those obtained using 
the pseudo-stationary assumption, but with simpler algebra. For weak Mach 
reflections, where the predictions of the pseudo-stationary model are in disagreement 
with experimental results, the non-stationary model predicts accuritely the observed 
shapes and positions of the reflected and Mach stem shocks and the spatially varying 
flow properties behind these shocks. However, the non-stationary model predicts that 
the gas flows above and below the contact surface, relative to the triple point, are 
not quite parallel. Parallel flows could be obtained only in the limiting case of grazing 
incidence, when the reflected shock was sonic. The model is based on the experimental 
results presented in Part 1 of this paper. 

1. Introduction 
Extensive reviews of the literature dealing with the reflection of shock waves at 

concave corners have been given by several authors (Henderson & Lozzi 1975,1979; 
Henderson & Siegenthaler 1980; Henderson 1980; Ben-Dor & Glass 1978,1979). Most 
of the studies discussed in these reviews describe the regular and Mach reflection of 
plane shocks from oblique surfaces in a manner first proposed by von Neumann 
(1943), in which the non-stationary flow is made pseudo-stationary by superposing 
on the flow-field a velocity equal and opposite to that of some point attached to the 
shock front system. For weak incident shocks the theory has not been successful at 
predicting the angle of incidence at which the transition from regular to Mach 
reflection occurs, or the angles made by the shocks and the contact surface where 
they meet at the triple point. The experimental results presented in Part 1 (Dewey 
& McMillin 1985) of this paper include measurements of the particle velocity vectors 
throughout the flow field of a weak Mach reflection and permit both a closer look 
at the limitations of the pseudo-stationary approach and an evaluation of an 
alternative, non-stationary model. 

2. The pseudo-stationary description of shock reflections 
Shock reflections can be studied in the laboratory in two ways. If a supersonic wind 

tunnel is available, an object placed in the flow will produce a bow shock which can 
be made to interact with a surface to produce a regular or a Mach reflection, 
depending on the shock strength and the angle of incidence. Such a configuration, 
as described for example by Hornung & Robinson (1982), produces a stationary 
reflection pattern which can be studied over an extended period of time, but the 
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experimental facility required is relatively elaborate and expensive. For this reason 
most workers have found it more convenient to study shock reflection phenomena 
using a non-stationary shock produced in a shock tube or similar device. However, 
in a shock tube the phenomenon lasts for only a fraction of a millisecond, and it is 
more difficult to describe theoretically a system of moving shocks growing with time. 

In  an attempt to overcome this last difficulty, self-similarity of the growing shock 
configuration is assumed and the experimentally observed non-stationary flow is 
made pseudo-stationary by imposing onto the flow-field a velocity equal and opposite 
to that of the point of reflection in the case of regular reflection, or of the triple point 
in the case of Mach reflection. After such a transformation a reflection in a shock tube 
might be expected to be identical to the corresponding reflection observed in a wind 
tunnel. 

Regular reflection is illustrated in figure 1, in the stationary and pseudo-stationary 
frames of reference. The incident shock has a Mach number Mi.  To bring the shocks 
to rest, a velocity equal and opposite to that of the reflection point G is imposed on 
the system. In the resulting pseudo-stationary frame of reference there is an incident 
oblique flow of Mach number M,, equal to M G ,  through the incident shock. This flow 
is deflected through an angle 8, and the flow speed is reduced to M,,  with a component 
directed towards the reflecting surface. To conserve mass, the flow through the 
reflected shock must be oblique and redirected parallel to the reflecting surface, that 
is, the second deflection angle 8, must be equal and opposite to 8,. The flow velocity 
is reduced finally to M,. 

Oblique shock theory, as discussed for example by Liepmann & Roshko (1957), 
shows that there is a maximum possible flow deflection for a shock of a particular 
strength and that if the angle of the reflecting surface, 0, in figure 1, is decreased, 
this maximum deflection angle is eventually reached. At some angle of incidence, 
therefore, regular reflection must change to Mach reflection. 

In  the case of Mach reflection, illustrated in figure 2, the non-stationary flow is made 
pseudo-stationary by imposing a velocity equal and opposite to that of the triple point. 
The resulting incident flow with Mach number M ,  equal to MT passes obliquely 
through the incident shock and is deflected through an angle 8,. The flow is then 
deflected by the reflected shock through an angle 0,, which is less than 8,. The incident 
flow also passes through the Mach stem shock and is deflected through an angle 8, 
such that 8, = 8, - 8,, i.e. the flows on both sides of the contact surface are parallel, 
though of different speeds. The density and entropy also differ across the contact 
surface, but the hydrostatic pressure on both sides is the same. 

The flows produced by regular and Mach shock reflections in a pseudo-stationary 
frame are frequently considered using pressure-deflection (P, 0) shock polars. A shock 
polar is an expression of the relationship, for a given shock strength, between the 
pressure jump across the shock and the flow deflection. Figure 3 shows the shock 
polars for a regular reflection. The M ,  and M ,  polars describe the flows through the 
incident and reflected shocks respectively. The latter has its origin on the former. 
Pressure in the flow behind the reflected shock relative to that ahead of the incident 
shock is represented by the point at which the M I  polar cuts the pressure axis, since 
the net deflection of the flow is zero. 

Figure 4 shows the shock polars for a Mach reflection. The reflected shock polar 
M ,  has its origin at (Pl,8J on the incident shock polar M,,, corresponding to the 
conditions behind the incident shock, and it again cuts the M ,  polar at a point which 
represents both the conditions behind the reflected shock (P,, - 0,) and behind the 
Mach stem shock (P,, 0,). 
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FIGURE 1. Regular reflection of a plane shock at a concave corner (a) in the laboratory frame 
and (b) in the pseudo-stationary frame of the reflection point G. 

3. Failure of the pseudo-stationary model in the case of weak shocks 
It is a well-known paradox that the approach of von Neumann succeeds in 

describing regular reflection and the Mach reflection of strong shocks, but fails to 
describe the Mach reflection of weak shocks. For weak shocks, the theory fails to 
predict correctly the angle of incidence at which transition from regular to Mach 
reflection occurs and, for weak Mach reflection, it fails to predict correctly the angles 
defined by the shocks and contact surface where they meet at the triple point. The 
mechanism of transition from regular to Mach reflection in the weak shock case is 
a continuing problem, but i t  is not a concern of the present paper. 

For most workers using schlieren photography the only flow direction which can 
be measured is that identified by the contact surface. However, the technique 
described in Part 1 of this paper has provided a complete mapping of the particle 
trajectories throughout the flow-field produced by a Mach reflection, so that it is 
possible to measure the angles of deflection of the flow passing through the curved 
reflected and Mach stem shocks. 

The experimentally determined flows were made pseudo-stationary by imposing 
on the flow vector field a velocity equal and opposite to that of the triple point. A 
result for one experiment is shown as figure 5.  The flow deflection angles across the 
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FIGURE 2. Mach reflection of a plane shock at a concave corner (a) in the laboratory frame and 
(b )  in the pseudo-stationary frame of the triple point T. 
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FIGURE 3. The shock polar representation of a particular regular reflection (Mi = 1.4, Ow = 60"). 
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FIGURE 4. The shock polar representation of a Mach reflection (Mi = 1.4, x+Ow = 45O). The 
relative size of the reflected shock polar, M I ,  decreases as the wedge angle Ow is decreased. 
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FIGURE 5. Flow in one of the experiments from series 3, in the pseudo-stationary frame of reference 
of the triple point. The triple-point trajectory in the laboratory frame is shown aa a dashed line. 



72 J .  M .  Dewey and D.  J .  McMillin 

incident, reflected and Mach shocks were determined, and in the subsequent analysis 
the values of these parameters, measured as close as possible to the triple point, will 
be discussed. The pressure ratios across the shocks are not changed by the 
transformation, and are obtained directly from measurements of normal shock speeds 
as discussed in Part 1.  The measured flow velocities, deflection angles and pressures 
close to the triple point for the three experiments described in Part 1 are given in 
table 1.  

The results from table 1 were used to calculate the shock polars for the three 
experiments and these are shown in figure 6. The measured conditions across the 
incident shocks agree with oblique shock theory within the range of experimental 
variation, i.e. the measured values of P, and 8, lie on the incident shock polar, and 
this point was used as the origin for the reflected shock polar. For each experiment 
the reflected shock polar was small, because the reflected shock is almost sonic in the 
region behind the incident shock, and as a result these polars do not intersect the 
incident polars. 

In addition, we find that the measured values of Pz and 8, - 8, behind the reflected 
shock, and of P3 and 8, behind the Mach stem shock do not lie on either the incident 
or the reflected shock polar. The measured values lie within the rectangles shown in 
figure 6. The sizes of the rectangles represent the maximum possible deviations that 
can be obtained using any interpretation of the experimental results. As discussed 
in Part 1, the angles 8, - 8, and O3 determined from flow tracer velocities near the 
triple point are not in agreement with the measured slope of the contact surface at  
the triple point in experimental series 3, the only series in which the contact surface 
could be photographically identified. The range of the latter measurements is also 
plotted in figure 6, as a dashed rectangle. It must be concluded that an accurate 
estimate of the flow and contact surface angles at  the triple point cannot be obtained 
easily using either the von Neumann theory or experiment, in the case of weak shock 
reflection a t  large angles of incidence. 

Attempts have been made previously to overcome these difficulties by modifying 
the von Neumann theory for weak shocks by creating a microstructure in the triple- 
point region, with the introduction of Prandtl-Meyer expansion waves (Bargmann 
& Montgomery 1945; Gurderley 1953) and the inclusion of viscous effects (Sternberg 
1959). These changes have complicated the theory without achieving agreement with 
experimental results. The requirement remains for a simple model based on 
assumptions that have not been invalidated experimentally, the most important of 
which are the assumptions of two-dimensional, self-similar flow and the validity of 
oblique shock theory and its use of the Rankine-Hugoniot relations. Real gas effects 
and viscosity should not be important in the weak shock case, except on a microscale. 

For weak Mach reflections, the cross-sections of the shock fronts are generally not 
straight lines. In the experiments referred to here, both the reflected and Mach stem 
shocks were circular in cross-section. When the triple point is brought to rest in 
accordance with the pseudo-stationary model, the growth of these curved shocks 
appears as a rotation. Both rotations are in a direction such that, at  a finite distance 
from the triple point, the reflected shock is stronger than it would be if it  were 
straight and the Mach stem is weaker. Only the flow through a singular triple point 
and exactly along an infinitely thin contact surface is truly pseudo-stationary. Neither 
does transformation of the flow relative to any other point produce a pseudo-stationary 
flow. For example, transformation of the flow relative to the foot of the Mach stem 
produces a pseudo-stationary flow only for the streamline along the wedge surface. 
A Mach reflection for shock strengths in the range being considered, viz Mach 1.1  
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Series 1 Series 2 Series 3 

Model Expt 

Mi t 1.105 1.105 f O . 0 0 1  

Ml 1.005 1.001 f0.005 
4 3.439 3.32f0.17 
Wpo 1.258 1.265f0.027 

2.75f0.14 
1.273f0.048 

X+ewt 21.95 21.95fo.13 

4--8, t 
P2IC7 t 

Model 

27.00 
1.240 

1 .008 
8.717 
1.627 
t 
z 

Expt 

1.240 k0.002 
27.00f0.09 
1.013+0.006 
8.41 f0.43 

1.627 k0.051 
7.50 f 0.13 

1.685 k 0.061 

Model 

28.98 

14.56 

1.415 

1.012 

2.169 
t 
t 

Expt 

1.415 f0.002 
28.98 f O . l l  
1.012 f0.013 
14.26f0.74 
2.183f0.094 
13.46f0.08 
2.304 50.094 

t Mi and x+Ow are the input parameters to the model. 
$ The pseudo-stationary model does not predict any values o PalPo an( 01-0, which are 

distinct from Pl/Po and 01, that is, there is no intersection of the polare shown in figure 6 other 
than the origin of the Ml polar. 

TABLE 1.  Flow properties near the triple point computed using the pseudo-stationary model, 
compared with values measured experimentally 
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FIGURE 6. Incident and reflected shock polars computed for the three experimental series described 
in Part 1 of this paper. The reflected shock polar for series 3 is also shown enlarged. The flow 
deflections and pressures measured behind the incident shocks are represented by crosses and those 
behind the reflected shocks near the triple point are represented by rectangles. Contact surface 
angles measured at the triple point in series 3 are represented by the dashed rectangle. 

to 1.4, can be made truly pseudo-stationary only by superimposing a very complex 
flow-field such as that indicated by Jones, Martin & Thornhill (1951). This conclusion 
may not be true for stronger shocks. At shock strengths for which the reflected and 
Mach stem shocks are straight in the region of the triple point, the pseudo-stationary 
assumption is appropriate. 
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4. A non-stationary description of shock reflections 
Ifthe flow associated with a weak Mach reflection cannot be made pseudo-stationary 

by a simple transformation, it is appropriate to look for an alternative method of 
describing such a flow. The ideal description of the flow would use as input parameters 
only the initial state of the gas, the strength of the incident shock and the angle of 
inclination of the reflecting surface. From these parameters alone, however, it  is 
difficult to compute the strength of the reflected shock in a Mach reflection and so, to 
obtain the reflected shock strength in the later analysis, the observed value for the 
triple-point trajectory angle is also included as an input parameter. 

4.1. Non-stationary regular reflection at a small angle of incidence 

To evaluate the non-stationary approach it was first applied to regular reflection at  
a small angle of incidence, for which the pseudo-stationary approach is known to 
produce valid results. 

Figure 7 represents the regular reflection of a plane shock from a rigid smooth 
surface at an angle of incidence wi, such that the signal from the corner 0 does not 
overtake the reflected shock at the point of reflection G .  The reflected shock is 
therefore planar near G. The incident shock Mach number is Mi and the pressure, 
density and sound speed of the gas ahead of the incident shock are Po, po, and co, 
respectively. 

The particle velocity, u,, and sound speed, c,, behind the incident shock are given 
by the normal shock relations: 

and 

where y is the ratio of specific heats. 
If Mi is the Mach number of the reflected shock in the frame of the gas moving 

behind the incident shock, then the particle velocity behind the reflected shock in 
this frame is u; = u, - u,, where 

Also, if u2 is parallel to the reflecting surface, 

(4) 
4 - U1 - 

sin 8, sin (90 - w,) ' 

where w, is the angle of reflection and Ow is the inclination of the reflecting surface 
(0, = 9O-w,). 

Combining (3) and (a), we may write 

The point of reflection, G, lies on the reflecting surface and on the incident and 
reflected shocks. The velocity of this point along the reflecting surface can therefore 
be written 

V, = V, cosecw, = Vi cosecwi, (6) 
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FIGURE 7. (a) Definition of the variables and ( b )  a vector relationship, used in the 
non-stationary model for regular reflection. 

where V,. and 6 are speeds of the reflected and incident shocks, respectively. V, is 
also equal to the speed of the reflected shock relative to the gas behind the incident 
shock Vi less the component perpendicular to the reflected shock of the particle 
velocity behind the incident shock, i.e. 

(7) V; = V,-u, sin (wr-Ow). 

Combining (6) and (7) gives the Mach number of the reflected shock relative to the 
flow behind the incident shock : 

Vi  - co cosecwi 
Mi = - <Mi--- u1 sin(w,-ew), 

cosecw, c1 

which, together with (5) ,  gives 

5&fip-- cosec wi 
c1 cosecw, c1 

u1 sin (w, - ew) 

1 - 
--sin @,-Ow) 

u1 coswi - 

This last equation may be rewritten as 

EF tan3 w, - (EG + Fz - 1 ) tan2 w, + (EF + 2FG) tan or - (EG + c2 + 1) = 0, 

where E, F and G are all functions of the initial parameters Mi and oi after application 
of (1) and (2). 
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The angle of reflection obtained from the numerical solution of (9) may be put into 
( 5 )  to obtain the strength of the reflected shock, Mi,  which in turn gives the pressure, 
Pz, and the particle velocity, ul) behind the reflected shock. The particle velocity 
behind the reflected shock in the fixed frame of reference is obtained using the vector 
relation u2 = u;l+u,, where u, is the particle velocity behind the incident shock 
computed using the normal shock equations. 

Solutions were obtained for incident shock strengths ranging from 6 = 0.1 to 0.9, 
where [ is the inverse pressure ratio Po/Pl across the shock, and angles of incidence 
throughout the range for which a real solution is possible. The relationships between 
angle of incidence and angle of reflection, between incident and reflected shock 
strengths, and the extreme angles of incidence for which a solution was possible agreed 
exa,ctly with these relationships calculated by Polachek & Seeger (1951), who used 
the pseudo-stationary approach. It is known that there is good agreement between 
the Polachek & Seeger solutions and experimental results, except in the region close 
to the extreme angle of incidence when the corner signal begins to overtake the point 
of reflection. It has, therefore, been demonstrated that the non-stationary approach 
described here duplicates the pseudo-stationary results for regular reflection, and with 
much simpler algebraic manipulation. 

4.2, Mach rejection at large angles of incidence 
With the establishment of the validity of the non-stationary approach in the case of 
regular shock reflection at small angles of incidence, the same approach was applied 
to Mach reflection at large angles of incidence, for the range of shock strengths and 
the small wedge angle used in the experiments described in Part 1. On the basis of 
the experimental observations, it is assumed that the cross-section of the reflected 
shock is circular, centred on a point which moves with the velocity of the flow behind 
the incident shock, and that the cross-section of the Mach stem shock is circular and 
perpendicular to the reflecting surface. 

The shock configuration is shown in figure 8. The aim is to describe this 
configuration in terms of the incident shock Mach number, Mi, the wedge angle, 8,, 
and the rest gas conditions ahead of the incident and Mach stem shocks. Particle 
velocity and sound speed behind the incident shock are given by (1) and (2 ) .  

With the assumption of circularity of the reflected shock, its speed, relative to the 
flow behind the incident shock, is given by 

(10) v: = u:+ %-2Ul VT cos(x+6w)) 

where V, is the speed of the triple point, and x is the angle between the triple-point 
trajectory and the reflecting surface. V, may be obtained from the incident shock 
speed using 

The Mach number of the reflected shock relative to the flow behind the incident shock, 
Mi = Vi/c l ,  can therefore be obtained from (10) and ( 1  1) in terms of the triple-point 
trajectory angle, x. 

The pressure ratios across the incident and reflected shocks are given by the normal 
shock relations 

VT = Vi sec(X+Ow). (11)  

'= P 2yA.q--(y-i) 

PO Y + l  

and 
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FIGURE 8. Definition of the variables used in the non-stationary model for Mach reflection. 

so that 

Similarly, the pressure ratio across the Mach stem just below the triple point in terms 
of its speed there, M,, is 

(15) 

Since the pressures on both sides of the contact surface are equal, (14) and (15) give 

P3 - 2YM2,-(7-1) 
PO y + l  . 
- _  

This equation gives Mm in terms of Mt,  and thus in terms of the triple-point 
trajectory angle, x. As the triple point lies on both the incident and Mach stem shocks, 
it can also be expressed in terms of x and 6, the acute angle between the two shocks: 

The flow velocity behind the Mach stem at the triple point, us, has a direction 
defined by 6 and magnitude given by the normal shock relation 

- u3 - - "( 
;J co y + l  *,--. 

The particle velocity behind the reflected shock in the stationary frame is uz, and 
relative to the flow behind the incident shock, u; = u2 - ul. The normal shock relations 
give the magnitude of u; in terms of M i :  

Let u, at the triple point, just above the slipstream, be oriented at  an angle a above 
the horizontal, as shown in figure 9. Then 

(20) 
U! U 

u1 - 2 -  2 

sin($-a) sina sin$' 
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FIGURE 9. Vector relationship between the particle flows in the Mach reflection model. 

where $ is the angle of inclination of the radius vector of the reflected shock through 
the triple point, defined by 

(21) 

From (20) both u2 and a, the magnitude and direction of the flow behind the reflected 
shock, are obtained in terms of x. 

The inclination of the slipstream can be obtained by considering the flow on the 
two sides of the contact surface, relative to the triple point. The vector diagram for 
the flow behind the Mach stem shock is shown as figure 10, from which 

3- U - VT 
sin/?, sin(X+8w+/?3-S)’ 

from which in turn 8,’ the angle between the slipstream and the triple-point 
trajectory, can be determined in terms of x. A similar relationship can be applied to 
the flow behind the reflected shock: 

(23) 
2- U - VT 

sin/?, sin (x + 19, +F2 - a) * 
Assuming that the shape of the cross-section of the Mach stem shock is circular 

and that the Mach stem shock is perpendicular to the reflecting surface, the position 
of this shock can be derived. Referring back to figure 8, the normal to the Mach stem 
shock at the triple point is inclined a t  6 to the incident flow. Let this normal vector 
intersect the reflecting surface at  K .  The Mach stem is then represented by a circle 
of radius TK, centred at K and intersecting the reflecting surface at  G .  The velocity 
of G, the foot of the Mach stem, along the reflecting surface is given by 

v, = V, [sin (x + 8, - 6) - sin x] 
sin (8, - 6) 

5. Evaluation of the non-stationary model 
The wedge angle and the strengths of the incident shocks of the experiments 

described in Part 1 were used with (10)-(24) to calculate the shock positions and flow 
parameters, in terms of the triple-point trajectory angle x. The values of x which were 
measured in the three series of experiments were then applied in the equations and 
numerical values of the properties calculated. The results gave excellent descriptions 
of the shock positions, as illustrated in figure 11, and of the flow properties adjacent 
to the triple point, as listed in table 2. 

Differences between the calculated and observed values of particle velocity, u2 and 
u3, and pressure, P2 and P,, were within the experimental errors and extremely small, 
particularly for series 1 and 2 for which the Mach numbers of the incident shocks 
were 1.105 and 1.240, respectively. There was excellent agreement between the 
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FIQURE 10. Mach stem shock speed and particle flow vectors at 
the triple point. The slipstream is labelled S .  

d 

C 

FIQURE 11. A graphical comparison between the shock front configuration as predicted by the 
non-stationary model and points measured on the shock fronts in photographs, for one of the series 
3 experiments (dl, = 1.415, x + B w  = 28.98'). Although there is a small difference between the 
positions of the Mach stem shock at the wedge surface, G, the predicted and measured values of 
its speed up the wedge were found to be in excellent agreement. 
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Series 1 Series 2 Series 3 

Model Expt Model Expt Model Expt 

1.105 
21.95 

1.007 
3.31 
3.45 
0.176 
0.176 
1.269 
1.269 
1.111 
1.147 

1.105 f 0,001 
21.95f0.13 
1.001 f0.005 
2.75 f0. 19 
2.70f0.14 

0.179f0.004 
0.178f0.004 
1.273f0.048 
1.278k0.041 
1.112 f0.002 
1.144 f 0.003 

1.240 
27.00 

1.009 
8.48 
8.68 
0.375 
0.378 
1.643 
1.643 
1.252 
1.301 

1.240f0.002 
27.00f0.09 
1.013f0.006 
7.50 fO.09 
7.40 f 0.13 

0.372 f 0.005 
0.380 f0.005 
1.685f0.061 
1.663 f0.043 
1.254 f0.003 
1.293 f0.003 

1.415 

1.012 
28.98 

14.39 
14.05 
0.609 
0.615 
2.21 1 
2.211 
1.435 
1.491 

1.415 f0.002 
28.98 f 0.1 1 
1.012 f0.013 
13.46 +0.08 
13.45f0.24 
0.615f0.012 
0.638 f 0.010 
2.304 f 0.094 
2.322f0.106 
1.453f0.011 
1.487 k 0.003 

t Mi and x+&, are the input parameters to the model. 

TABLE 2. Flow properties near the triple point computed using the non-stationary model, 
compared with values measured experimentally 

calculated and observed Mach numbers of the Mach stem shocks, both at the triple 
point, M,, and at  the wedge surface, dl,. The differences between observed and 
calculated values of MG were only 0.26 %, 0.31 % and 0.27 % in the three experimental 
series. 

It will be noted from the results listed in table 2 that pz and p3, the angles of the 
flow velocity vectors above and below the slipstream, relative to the triple point, are 
not equal. The difference between these angles are small, viz 0.14', 0.20" and 0.26', 
but are not caused by numerical inaccuracies in the solution of the equations. If it  
is assumed that pZ = p3, (22) and (23) can be solved for 2, and the model does not 
then require the input of any measured parameter to define the strength of the 
reflected shock. Unfortunately this yields the solution for an infinitely thin wedge, 
with a sonic reflected shock, and for which the strength of the Mach stem shock close 
to the triple point equals that of the incident shock. 

Sternberg (1959) has shown that, when viscosity is considered, the condition that 
p2 = p3 is not required, and also that Pz will not equal P3, a basic assumption of the 
inviscid model. The slight difference between the values of p z  and p3  given by the 
inviscid, non-stationary model may indicate an error in that model's assumptions, 
such as the circularity of the cross-sections of the reflected and Mach stem shocks, 
but no such error is apparent in the experimental results. 

The differences between the values of p2 and p3 obtained from the model and the 
measured slopes of the contact surfaces, as given in table 2, are probably not 
significant since the measured values refer to a part of the contact surface about 
1.5 cm from the triple point, as explained in Part 1. 

6. Conclusions 
An analysis of the experimentally observed particle trajectories in the three flow 

regions defined by a Mach reflection has confirmed that the descrption of the 
phenomenon based on the assumptions of the classical pseudo-stationary theory is 
inappropriate for the range of incident shock strengths and the angle of incidence 
studied in the experiments described in Part 1. An alternative, non-stationary 
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approach to plane shock reflections has been suggested. In the region of regular 
reflection this approach produces results which are identical to those using a 
pseudo-stationary configuration relative to the reflection point, and with simpler 
algebra. In  the case of Mach reflection at  large angles of incidence, the non-stationary 
model gives the shock positions and flow properties behind the reflected and Mach 
shocks in excellent agreement with measured values. 

The model also gives values of the flow properties in regions not immediately 
adjacent to the triple point, such as the foot of the Mach stem. This would appear 
to be a necessary feature of any description of the Mach reflection of weak shocks 
in which the particle and sound speeds are such as to permit signals from the flow- 
field to overtake the shocks. 

The model does not predict parallel flows, relative to the triple point, on the two 
sides of the slipstream. Parallel flows could be obtained only in the limiting case of 
a very large angle of incidence in which the reflected shock was sonic. 
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